Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            This paper describes the effects of laser pulse rate and solution flow rate on the determination of lithium at high pressure for water and 2.5% sodium chloride solutions using laser-induced breakdown spectroscopy (LIBS). Preliminary studies were performed with 0–40 mg L −1 Li solutions, at ambient pressure and at 210 bar, and in static and flowing (6 mL · min −1 ) regimes, for a combination of four different measurement conditions. The sensitivity of calibration curves depended on the pressure and the flow rate, as well as the laser pulse rate. The sensitivity of the calibration curve increased about 10% and 18% when the pressure was changed from 1 to 210 bar for static and flowing conditions, respectively. However, an effect of flow rate at high pressure for both 2 and 10 Hz laser pulse rates was observed. At ambient pressure, the effect of flow rate was negligible, as the sensitivity of the calibration curve decreased around 2%, while at high pressure the sensitivity increased around 4% when measurements were performed in a flow regime. Therefore, it seems there is a synergistic effect between pressure and flow rate, as the sensitivity increases significantly when both changes are considered. When the pulse rate is changed from 2 to 10 Hz, the sensitivity increases 26–31%, depending on the pressure and flow conditions. For lithium detection limit studies, performed with a laser pulse energy of 2.5 mJ, repetition rate of 10 Hz, gate delay of 500 ns, gate width of 1000 ns, and 1000 accumulations, a value around 40 µg L −1 was achieved for Li solutions in pure water for all four measurement conditions, while a detection limit of about 92 µg L −1 was determined for Li in 2.5% sodium chloride solutions, when high pressure and flowing conditions were employed. The results obtained in the present work demonstrate that LIBS is a powerful tool for the determination of Li in deep ocean conditions such as those found around hydrothermal vent systems.more » « less
- 
            A monolithic spatial heterodyne Raman spectrometer (mSHRS) is described, where the optical components of the spectrometer are bonded to make a small, stable, one-piece structure. This builds on previous work, where we described bench top spatial heterodyne Raman spectrometers (SHRS), developed for planetary spacecraft and rovers. The SHRS is based on a fixed grating spatial heterodyne spectrometer (SHS) that offers high spectral resolution and high light throughput in a small footprint. The resolution of the SHS is not dependent on a slit, and high resolution can be realized without using long focal length dispersing optics since it is not a dispersive device. Thus, the SHS can be used as a component in a compact Raman spectrometer with high spectral resolution and a large spectral range using a standard 1024 element charge-coupled device. Since the resolution of the SHRS is not dependent on a long optical path, it is amenable to the use of monolithic construction techniques to make a compact and robust device. In this paper, we describe the use of two different monolithic SHSs (mSHSs), with Littrow wavelengths of 531.6 nm and 541.05 nm, each about 3.5 × 3.5 × 2.5 cm in size and weighing about 80 g, in a Raman spectrometer that provides ∼3500 cm−1spectral range with 4–5 cm−1and 8–9 cm−1resolution, for 600 grooves/mm and 150 grooves/mm grating-based mSHS devices, respectively. In this proof of concept paper, the stability, spectral resolution, spectral range, and signal-to-noise ratio of the mSHRS spectrometers are compared to our bench top SHRS that uses free-standing optics, and signal to noise comparisons are also made to a Kaiser Holospec f/1.8 Raman spectrometer.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
